翻訳と辞書
Words near each other
・ Singular control
・ Singular distribution
・ Singular function
・ Singular homology
・ Singular integral
・ Singular integral operators of convolution type
・ Singular integral operators on closed curves
・ Singular isothermal sphere profile
・ Singular measure
・ Singular perturbation
・ Singular point of a curve
・ Singular point of an algebraic variety
・ Singular SA03
・ Singular solution
・ Singular spectrum analysis
Singular submodule
・ Singular term
・ Singular they
・ Singular trace
・ Singular value
・ Singular value decomposition
・ Singulari Nos
・ Singularia
・ Singularis
・ Singularitarianism
・ Singularity
・ Singularity (audio drama)
・ Singularity (Bill DeSmedt novel)
・ Singularity (climate)
・ Singularity (Joe Morris album)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Singular submodule : ウィキペディア英語版
Singular submodule
In the branches of abstract algebra known as ring theory and module theory, each right (resp. left) ''R'' module ''M'' has a singular submodule consisting of elements whose annihilators are essential right (resp. left) ideals in ''R''. In set notation it is usually denoted as \mathcal(M)=\\,. For general rings, \mathcal(M) is a good generalization of the torsion submodule tors(''M'') which is most often defined for domains. In the case that ''R'' is a commutative domain, tors(M)=\mathcal(M).
If ''R'' is any ring, \mathcal(R_R) is defined considering ''R'' as a right module, and in this case \mathcal(R_R) is a twosided ideal of ''R'' called the right singular ideal of ''R''. Similarly the left handed analogue \mathcal(_R R) is defined. It is possible for \mathcal(R_R)\neq\mathcal(_R R).
==Definitions==
Here are several definitions used when studying singular submodule and singular ideals.
In the following, ''M'' is an ''R'' module:
*''M'' is called a singular module if \mathcal(M)=M\,.
*''M'' is called a nonsingular module if \mathcal(M)=\\,.
*''R'' is called right nonsingular if \mathcal(R_R)=\\,. A left nonsingular ring is defined similarly, using the left singular ideal, and it is entirely possible for a ring to be right-but-not-left nonsingular.
In rings with unity it is always the case that \mathcal(R_R)\subsetneq R\,, and so "right singular ring" is not usually defined the same way as singular modules are. Some authors have used "singular ring" to mean "has a nonzero singular ideal", however this usage is not consistent with the usage of the adjectives for modules.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Singular submodule」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.